Hess Cognitive Rigor Matrix (Math–Science CRM):
Applying Webb’s Depth-of-Knowledge Levels to Bloom’s Cognitive Process Dimensions

| Revised Bloom’s Taxonomy | Webb’s DOK Level 1
Recall and Reproduction | Webb’s DOK Level 2
Skills and Concepts | Webb’s DOK Level 3
Strategic Thinking/Reasoning | Webb’s DOK Level 4
Extended Thinking |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Remember</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Retrieve knowledge from long-term memory, recognize, recall, locate, identify | o Recall, observe, and recognize facts, principles, properties
 o Recall/identify conversions among representations or numbers (e.g., customary and metric measures) | o Specify and explain relationships (e.g., nonexamples or examples; cause-effect)
 o Make and record observations
 o Explain steps followed
 o Summarize results or concepts
 o Make basic inferences or logical predictions from data or observations
 o Use models or diagrams to represent or explain mathematical concepts
 o Make and explain estimates | o Use concepts to solve nonroutine problems
 o Explain, generalize, or connect ideas using supporting evidence
 o Make and justify conjectures
 o Explain thinking or reasoning when more than one solution or approach is possible
 o Explain phenomena in terms of concepts | o Relate mathematical or scientific concepts to other content areas, other domains, or other concepts
 o Develop generalizations of the results obtained and the strategies used (from investigation or readings) and apply them to new problem situations |
| **Understand** | | | | |
| Construct meaning, clarify, paraphrase, represent, translate, illustrate, give examples, classify, categorize, summarize, generalize, infer a logical conclusion, predict, compare or contrast, match like ideas, explain, construct models | o Evaluate an expression
 o Locate points on a grid or number line
 o Solve a one-step problem
 o Represent math relationships in words, pictures, or symbols
 o Read, write, compare decimals in scientific notation | o Select a procedure according to criteria and perform it
 o Solve a routine problem applying multiple concepts or decision points
 o Retrieve information from a table, graph, or figure and use it to solve a problem requiring multiple steps
 o Translate between tables, graphs, words, and symbolic notations (e.g., graph data from a table)
 o Construct models given criteria | o Design an investigation for a specific purpose or research question
 o Conduct a designed investigation
 o Use concepts to solve nonroutine problems
 o Use and show reasoning, planning, and evidence
 o Translate between problem and symbolic notation when not a direct translation | o Select or devise an approach among many alternatives to solve a problem
 o Conduct a project that specifies a problem, identifies solution paths, solves the problem, and reports results |
| **Apply** | | | | |
| Carry out or use a procedure in a given situation, carry out (apply to a familiar task) or use (apply) to an unfamiliar task | o Follow simple procedures (step-by-step instructions)
 o Calculate, measure, apply a rule (e.g., rounding)
 o Apply algorithm or formula (e.g., area, perimeter)
 o Solve linear equations
 o Make conversions among representations or numbers, or within and between customary and metric measures | o Select a procedure according to criteria and perform it
 o Solve a routine problem applying multiple concepts or decision points
 o Retrieve information from a table, graph, or figure and use it to solve a problem requiring multiple steps
 o Translate between tables, graphs, words, and symbolic notations (e.g., graph data from a table)
 o Construct models given criteria | o Design an investigation for a specific purpose or research question
 o Conduct a designed investigation
 o Use concepts to solve nonroutine problems
 o Use and show reasoning, planning, and evidence
 o Translate between problem and symbolic notation when not a direct translation | o Select or devise an approach among many alternatives to solve a problem
 o Conduct a project that specifies a problem, identifies solution paths, solves the problem, and reports results |
| **Analyze** | | | | |
| Break into constituent parts, determine how parts relate, differentiate between relevant-irrelevant, distinguish, focus, select, organize, outline, find coherence, deconstruct | o Retrieve information from a table or graph to answer a question
 o Identify whether specific information is contained in graphic representations (e.g., table, graph, T-chart, diagram)
 o Identify a pattern or trend | o Categorize, classify materials, data, figures based on characteristics
 o Organize or order data
 o Compare-contrast figures or data
 o Select an appropriate graph and organize and display data
 o Interpret data from a simple graph
 o Extend a pattern | o Compare information within or across data sets or texts
 o Analyze and draw conclusions from data, citing evidence
 o Generalize a pattern
 o Interpret data from complex a graph
 o Analyze similarities-differences between procedures or solutions | o Analyze multiple sources of evidence
 o Analyze complex or abstract themes
 o Gather, analyze, and evaluate information in depth |
| **Evaluate** | | | | |
| Make judgments based on criteria, check, detect inconsistencies or fallacies, judge, critique | “UG”—unsubstantiated generalizations = stating an opinion without providing any support for it! | o Cite evidence and develop a logical argument for concepts or solutions
 o Describe, compare, and contrast solution methods
 o Verify reasonableness of results | o Gather, analyze, and evaluate information to draw conclusions
 o Apply understanding in a novel way, provide argument or justification for the application | |
| **Create** | | | | |
| Reorganize elements into new patterns or structures, generate, hypothesize, design, plan, produce | o Brainstorm ideas, concepts, or perspectives related to a topic | o Generate conjectures or hypotheses based on observations or prior knowledge and experience | o Synthesize information within one data set, source, or text
 o Formulate an original problem given a situation
 o Develop a scientific or mathematical model for a complex situation | o Synthesize information across multiple sources or texts
 o Design a mathematical model to inform and solve a practical or abstract situation |

Use these Hess CRM curricular examples with most mathematics or science assignments or assessments.

Available for download at resources.corwin.com/HessToolkit and www.karin-hess.com/free-resources

© Karin Hess (2009, updated 2017). A local assessment toolkit to support deeper learning: Guiding school leaders in linking research with classroom practice. Permission to reproduce is given only when authorship is fully cited [karinhesvvt@gmail.com]