AT-A-GLANCE LIST OF BASIC FACT STRATEGIES

STRATEGY NAME	HOW THE STRATEGY WORKS	EXAMPLE STUDENT TALK
Addition	Example: 8 + 6	
Near Doubles	Student looks for a double they know that is similar to the problem. In this case, 8 + 8, 6 + 6, or even 7 + 7.	That's 14—6 plus 6 plus 2.
Making 10	Student moves some from one addend to the other so that one addend is 10.	It's 14. I moved two over and thought 10 + 4.
Pretend-a-10 (Compensation)	Student pretends the larger addend is 10, adds, then adjusts the answer.	It's 14. Well, 10 and 6 is 16, and I have to take two away, so that's 14.
Subtraction	Example: 14 – 9	
Think Addition	Student thinks how to get from the subtrahend (9) to the minuend (14) [9 + = 14]. <i>Note: Subtraction as compare</i>	It's 5. I pictured a number line and jumped up 1 to 10 and then 4 more.
Down Under 10	Student jumps from minuend (14) to 10 and then jumps the rest of the subtrahend (9). <i>Note: Subtraction as take away</i>	It's 5. I broke 9 into 4 and 5. I jumped down 4 to 10, and then 5 more to 5.
Take From 10	Student subtracts the subtrahend (9) from 10, then adds on the extra ones from the minuend. <i>Note: Subtraction as take away</i>	I got 5. I thought of 14 as 10 and 4, subtracted 9 from 10 and got 1, added the 4 back on and its 5.
Multiplication	Example: 6 × 7	
Doubling	Student sees an even factor, finds the product of half of that factor, and doubles the answer.	I got 42. I know 3 times 7 is 21, and I doubled 21.
Add-a-Group	Student thinks of a known fact where one of the factors is one less (e.g., $5 \times 7 \text{ or } 6 \times 6$), multiplies, and then adds a group back on.	When I see a 6, I use my 5s. 5 times 7 is 35, and 6 more is 42.
Subtract-a-Group	Student thinks of a known fact where one of the factors is one more, multiplies, and then adds a group back on.	I know 7 groups of 7 is 49, so I subtract one group of 7 and have 42.
Near Squares	Student uses a square fact they know and then adds or subtracts a group. <i>Note: This is an undertaught but useful strategy</i> .	Well, 6 times 6 is 36, and I add 6 more and get 42.
Division	Example: 36 ÷ 9	
Think Multiplication	Student thinks, how many groups of 9 equal 36?	I know 9 times 4 is 36, so it's 4. OR I used Doubling to get to 18, doubled again, and got 36, so it is 4.

Retrieved from the companion website for Figuring Out Fluency in Mathematics Teaching and Learning, Grades K–8: Moving Beyond Basic Facts and Memorization by Jennifer M. Bay-Williams and John J. SanGiovanni. Thousand Oaks, CA: Corwin, www.corwin.com. Copyright © 2021 by Corwin Press, Inc. All rights reserved. Reproduction authorized for educational use by educators, local school sites, and/or noncommercial or nonprofit entities that have purchased the book.