THE SOLO MODEL APPLIED TO MATHEMATICS

Learning Intentions

Success Criteria

SOLO 1: Represent and solve problems involving addition and subtraction.

Uni-/Multi- Structural	Know basic facts for addition and subtraction. Represent addition and subtraction using multiple models (manipulatives, number lines, bar diagrams, etc.).	I know my sums to twenty in both addition and subtraction. I can show my thinking using manipulatives and pictures.
Relational	Understand the meaning of addition or subtraction by modeling what is happening in a contextual situation (Carpenter, Fennema, Franke, Levi, \& Empson, 2014). Recognize when either addition or subtraction is used to solve problems in different situations.	When I read a word problem, I can describe what is happening and use addition or subtraction to find a solution.
Extended	Use addition and subtraction to solve problems in a variety of situations.	I can use what I know about addition and subtraction contexts to figure out how to use addition and subtraction to solve problems beyond those I solve in class.
Abstract		

SOLO 2: Reason with shapes and their attributes.

Uni-/Multi- Structural	Know the definitions and key attributes for shapes.	I can identify and name the attributes of shapes.
Relational	Recognize relationships among shapes.	I can explain how two shapes are related to each other.
Extended Abstract	Classify two-dimensional shapes based on properties.	I can create a diagram to show how different quadrilaterals are related to each other.

Source: Adapted from Biggs and Collis (1982).
This figure and a blank template are available for download at http://resources.corwin.com/VL-mathematics
Copyright © 2017 by Corwin. All rights reserved. Reprinted from Visible Learning for Mathematics, Grades K-12: What Works Best to Optimize Student Learning by John Hattie, Douglas Fisher, Nancy Frey, Linda M. Gojak, Sara Delano Moore, and William Mellman. Thousand Oaks, CA: Corwin, www.corwin.com. Reproduction authorized only for the local school site or nonprofit organization that has purchased this book.

Figure 1.3

