PEER-ASSISTED REFLECTION (PAR) FOR INTRODUCTION TO FUNCTIONS AND INTERVAL NOTATIONS

Success Criteria

- [] I can read, understand, and translate between set notation, interval notation, and a number line.
- [] I can determine whether a relation is also a function.
- [] I can identify the domain and range of a relation.
- [] I can categorize a function as one-to-one, onto, both, or neither.
- [] I can identify whether a function is discrete or continuous.
- [] I can read, write, and understand function notation: f(x).
- [] I can evaluate functions for given x-values.
- 1) The domain of a relation is $\{x | x \ge 0\}$ and the range is $[-4,\infty)$.
 - a. Express the domain and range of this relation in set notation, interval notation, and as a number line.
 - b. Graph a relation that is **NOT** a function that has this domain and range. Explain why your graph is **NOT** a function.
 - c. Graph a relation that is **ALSO** a function that has this domain and range. Explain why your graph **IS** a function.
- Claim: If a function is onto, then it must be one-to-one as well.
 Justify or refute this claim using mathematical evidence and logical reasoning.
- 3) Sara was born exactly two years before Sam.
 - a. Write a function that describes Sam's age, given Sara's age.
 - b. What do the domain and range represent?
 - Explain why you think this function is either discrete or continuous.
 - d. How old was Sam when Sara was ten-and-a-half years old?

Reviewed by: _____

Rate your peer's mastery of the success criterion (this is the *last* thing you do):

[] I can read, understand, and translate between set notation, interval notation, and a number line.

0—DO NOT check that box	1—ALMOST check that box	2—CHECK that box
Many mathematical errors and/or	Few mathematical errors and/	No mathematical errors and
incomplete or	or somewhat	perfectly
unclear annotations	incomplete or	complete and
	unclear annotations	clear annotations

[] I can determine whether a relation is also a function.

0-DO NOT check	1—ALMOST check	2—CHECK that box
that box	that box	

[] I can identify the domain and range of a relation.

0—DO NOT check	1—ALMOST check	2—CHECK that box
that box	that box	

[] I can categorize a function as one-to-one, onto, both, or neither.

0—DO NOT check that	1—ALMOST check	2—CHECK that
box	that box	box

[] I can identify whether a function is discrete or continuous.

0—DO NOT check that	1—ALMOST check	2—CHECK that
box	that box	box

[] I can read, write, and understand function notation: f(x).

0—DO NOT check that	1—ALMOST check	2—CHECK that
box	that box	box

[] I can evaluate functions for given x-values.

0-DO NOT check	1-ALMOST	2—CHECK that box
that box	check that box	

ANNOTATIONS (author's and peer's)