Selecting and Sequencing Student Solutions

MATTHEW HARMON:

PEG SMITH:
One benefit of selecting and sequencing is just to be able to orchestrate progression of conceptual depth that hopefully catches students in a large net at first, and then maybe moves them towards just being able to examine what they initially knew and trying to see it through a different lens that might benefit them in future tasks.

Selecting is the practice of determining which solution strategies the teacher wants to have shared during the whole class discussion. In order to make the selections, the teacher needs to review the data they've collected on their monitoring tool and decide which of the solutions, and ultimately in what order, would best help the students access and make sense of the mathematical ideas that she's targeting in the lesson. Selecting can be very challenging, particularly if you are not clear on what it is you're trying to accomplish mathematically. So selecting must be done in light of the mathematical learning goals that you've articulated for the particular lesson. So it's not about letting 1,000 flowers bloom and letting every student share what they've done. It's about trying to decide which solutions are going to allow you to make the mathematics that you want to put on the table visible for discussion. Sequencing is really about the order in which you're going to arrange the solutions that are going to be discussed, such that the first solution that gets talked about is one that every student in the class can access. It may be a solution that uses some sort of a concrete model or representation that makes the mathematical idea clear. And it may then build up to a more abstract or symbolic representation so that what you're doing is you're taking students on a journey. You're beginning with something that everyone will relate to. And then you may be moving to another solution that is slightly more complicated or more abstract. And through this process what you're doing is you're developing a mathematical storyline. There is something specific that you want students to learn, and every solution that you have discussed provides some piece of information that helps you get to the end game. The sequence needs to build that understanding so that every piece of work that's examined adds to the understanding in some unique way. If a piece of work isn't contributing something different, then there's probably no reason to talk about it. So I think one of the challenges is being clear about what you're trying to accomplish, understanding the mathematics well enough to see how one piece, one solution strategy fits with the next.

CORI MORAN: So the benefit is really making sure that you get to those end goals. I think in the past, I would have classes where the goals were started in the beginning and maybe not referenced throughout the lesson.

Selecting and Sequencing Student Solutions

And by selecting and sequencing, I can make sure that those goals are really highlighted in a way that I really can create a story for the students.

PEG SMITH:

One challenge that teachers often face in selecting and sequencing is when you should feature a misconception. So the first thing to think about is that every error students make may not be worthy of having a class discussion about it. But when a student has a missing piece conceptually, and multiple students in the class hold the same misconception, then it's really important to have a public discussion about it so that students can come to understand not just how to get the right answer, but why it doesn't make sense to do it this way. Another thing to consider is who will be the presenter. And this is an opportunity for a teacher to really consider which student who produced a particular solution has not had time recently to be seen as publicly competent as a mathematical doer. In this sense, selection can be an issue of equity, making sure that over time each and every student has an opportunity to demonstrate competence in a public setting of the classroom.

