ASYMMETRIC (NONMATCHING) FACTORS				
	Product Unknown	Multiplier (Number of Groups) Unknown	Measure (Group Size) Unknown	
Equal Groups	Mayim has 8 vases to decorate the tables at her party. She cuts a ribbon $ \frac{3}{4} $ feet long to tie a bow around the vase. How many feet of ribbon does she need? $8 \times \frac{3}{4} = x$ $x \div 8 = \frac{3}{4} $	Mayim has some vases to decorate the tables at her party. She uses $ \frac{3}{4} $ feet of ribbon to tie a bow around each vase. If she uses 14 feet of ribbon, how many vases does she have? $x \times \frac{3}{4} = 4$ $x = 4 \div \frac{3}{4}$	Mayim uses I4 feet of ribbon to tie bows around the vases that decorate the tables at her party. If there are 8 vases, how many feet of ribbon are used on each vase? 8x = 14 $14 \div 8 = x$	
	Product Unknown (<i>y</i>)	(Unit) Rate Unknown (<i>k</i>)	Measure Unknown (x)	
Ratio/Rate*	Tom drove 60 miles per hour (on average) for 4 hours. How many miles did he travel? $4 \times 60 = y$ $\frac{y}{4} = 60$	Tom drove at the same speed (on average) during his entire 4-hour trip. He traveled a total of 240 miles. At what speed did he travel (on average)? $4k = 240$ $\frac{240}{4} = k$	Tom drove 60 miles per hour (on average) for all 240 miles of his trip. For how many hours did he travel? 60x = 240 $\frac{240}{x} = 4$	
	Resulting Value Unknown	Scale Factor (Times as Many) Unknown	Original Value Unknown	
Multiplicative Comparison	Armando's family is doing a puzzle this week that has 500 pieces. Next week's puzzle has 1.5 times as many pieces. How many pieces does next week's puzzle have? $500 \times 1.5 = x$	Sydney's middle school has 500 students. José's middle school has 750 students. How many times bigger than Sydney's school is José's school? 500x=750	Mrs. W didn't order enough tickets for the festival. Mr. D ordered 750 tickets. Mrs. W said, "You bought I.5 times as many tickets as I did." How many tickets did Mrs. W order? $1.5 \times x = 750$	
	x ÷ 1.5 = 500	$500 = 750 \div x$	750 ÷ <i>x</i> = 1.5	
SYMMETRIC (MATCHING) FACTORS				
	Product Unknown	One Dimension Unknown		Both Dimensions Unknown
Area/Array	Mr. Bradley bought a new mat for the front entrance to the school. One side measured $3\frac{1}{3}$ feet and the other side measured 12 feet. How many square feet does the mat cover? $3\frac{1}{3} \times 12 = x$ $x \div 12 = 3\frac{1}{3}$	The 40 members of the student council lined up on the stage to take yearbook pictures. The first row included 8 students and the rest of the rows did the same. How many rows were there? 8x = 40 $x = 40 \div 8$		Daniella was designing a foundation using graph paper. She started with 40 squares. How many units long and wide could the foundation be? $x \times y = 40$ $40 \div x = y$
	Sample Space (Total Outcomes) Unknown	One Factor Unknown		Both Factors Unknown
Combinatorics** (Probability and Cartesian Products)	Karen has 3 shirts and 7 pairs of pants. How many unique outfits can she make? $3 \times 7 = x$ $3 = x \div 7$	Evelyn says she can make 2I unique ice cream sundaes (I scoop + I topping) using just ice cream flavors and toppings. If she has 3 flavors of ice cream, how many toppings does she have? 3y = 2I $2I \div 3 = x$		Audrey can make 2I different fruit sodas using the soda mixing machine. How many different flavorings and sodas could there be? xy = 2I
				$x = 2I \div y$

Retrieved from the companion website for *Mathematize It! Going Beyond Key Words to Make Sense of Word Problems, Grades 6–8* by Kimberly Morrow-Leong, Sara Delano Moore, and Linda M. Gojak. Thousand Oaks, CA: Corwin, www.corwin.com. Copyright © 2021 by Corwin Press, Inc. All rights reserved. Reproduction authorized for educational use by educators, local school sites, and/or noncommercial or nonprofit entities that have purchased the book.

*Equal Groups problems, in many cases, are special cases of a category that includes all ratio and rate problem situations. Distinguishing between the two categories is often a matter of interpretation. Since the Ratio/Rate category is a critically important piece of the middle school curriculum and beyond, the Ratio/Rate category is given its own row here.

**Combinatorics (probability and Cartesian products) are typically not included in the table of multiplication and division problem situations. Since this is a category of problem situation addressed in middle school mathematics standards, it has been added to this table.

References

Carpenter, T. P., Hiebert, J., & Moser, J. M. (1981). Problem structure and first-grade children's initial solution processes for simple addition and subtraction problems. *Journal for Research in Mathematics Education*, 27–39.

Heller, J. I., & Greeno, J. G. (1979). Information processing analyses of mathematical problem solving. In R. Lesh (Ed.), *Applied mathematical problem solving* (pp. 181–206). Evanston, IL: The Ohio State University.

National Governors Association Center for Best Practices and Council of Chief State School Officers. (2010). *Common Core State Standards for Mathematics*. Washington, DC: Common Core Standards Initiative.

Riley, M. S., Greeno, J. G., & Heller, J. I. (1984). Development of children's ability in arithmetic. In *Development of Children's Problem-Solving Ability in Arithmetic. No. LRDC-1984/37.* (pp. 153–196). Pittsburgh University, PA: Learning Research and Development Center, National Institute of Education.

Retrieved from the companion website for *Mathematize It! Going Beyond Key Words to Make Sense of Word Problems, Grades 6–8* by Kimberly Morrow-Leong, Sara Delano Moore, and Linda M. Gojak. Thousand Oaks, CA: Corwin, www.corwin.com. Copyright © 2021 by Corwin Press, Inc. All rights reserved. Reproduction authorized for educational use by educators, local school sites, and/or noncommercial or nonprofit entities that have purchased the book.