Addition and Subtraction Problem Situations

ACTIVE SITUATIONS						
	Result Unknown	Change Addend Unknown	Start Addend Unknown			
Add-To	Paulo counted 9 crayons. He put them in the basket. Paulo found 6 more crayons under the table. He put them in the basket. How many crayons are in the basket? 9+6=x 6=x-9	Paulo counted 9 crayons. He found more and put them in the basket. Now Paulo has I5 crayons. How many crayons did he put in the basket? 9+x=15 9=15-x	Paulo had some crayons. He found 6 more crayons under the table. Now he has I5 crayons. How many crayons did Paulo have in the beginning? x+6=15 15-6=x			
Take-From	There are 19 students in Mrs. Amadi's class. 4 students went to the office to say the Pledge. How many students are in the class now? 19-4=x 4+x=19	There are 19 students in Mrs. Amadi's class. Some students went to class to read the Pledge. There were still 15 students in the classroom. How many students went to the office? 8+x=19 x=19-8	4 students went to the office. I5 students were still in the classroom. How many students are there in Mrs. Amadi's class? x - 4 = 15 15 + 4 = x			

RELATIONSHIP (NONACTIVE) SITUATIONS

	Total Unknown	One Part Unknown	Both Parts Unknown	
Part-Part- Whole	The first grade voted on a game for recess. Il students voted to play four square. 8 voted to go to the playground. How many students are in the class? 8+II=x x-II=8	The I9 first graders voted on a recess activity. 8 students voted to go to the playground. How many wanted to play four square? I + x = I9 x = I9 - II		The I9 first graders voted on a recess activity. Some wanted to play four square. Some wanted to go to the playground. What are some ways the first graders could have voted? x + y = I9 I9 - x = y
	Difference Unknown	Greater Quantity Unknown	Lesser Quantity Unknown	
Additive Comparison	Jessie's paper airplane flew 14 feet. Jo's paper airplane flew 9 feet. How much less did Jo's paper airplane fly than Jessie's? 14-9=x 9+x=14	Jo's paper airplane flew 9 feet. Jessie's paper airplane flew 5 feet more than Jo's. How far did Jessie's paper airplane fly? 9+5=x x-5=9	Jessie's paper airplane flew 14 feet. Jo's paper airplane flew 5 feet less than Jessie's paper airplane. How far did Jo's paper airplane fly? 14-5=x 14=x+5	

Retrieved from the companion website for *Mathematize It! Going Beyond Key Words to Make Sense of Word Problems, Grades K–*2 by Kimberly Morrow-Leong, Sara Delano Moore, and Linda M. Gojak. Thousand Oaks, CA: Corwin, www.corwin.com. Copyright © 2020 by Corwin Press, Inc. All rights reserved. Reproduction authorized for educational use by educators, local school sites, and/or noncommercial or nonprofit entities that have purchased the book.

Table References

Carpenter, T. P., Hiebert, J., & Moser, J. M. (1981). Problem structure and first-grade children's initial solution processes for simple addition and subtraction problems. *Journal for Research in Mathematics Education*, 27–39.

Heller, J. I., & Greeno, J. G. (1979). Information processing analyses of mathematical problem solving. In R. Lesh (Ed.), *Applied mathematical problem solving* (pp. 181–206). Evanston, IL: The Ohio State University.

National Governors Association Center for Best Practices and Council of Chief State School Officers. (2010). *Common Core State Standards for Mathematics*. Washington, DC: Common Core Standards Initiative.

Riley, M. S., Greeno, J. G., & Heller, J. I. (1984). Development of children's ability in arithmetic. In *Development of Children's Problem-Solving Ability in Arithmetic. No. LRDC-1984/37.* (pp. 153–196). Pittsburgh University, PA: Learning Research and Development Center, National Institute of Education.

Retrieved from the companion website for *Mathematize It! Going Beyond Key Words to Make Sense of Word Problems, Grades K–2* by Kimberly Morrow-Leong, Sara Delano Moore, and Linda M. Gojak. Thousand Oaks, CA: Corwin, www.corwin.com. Copyright © 2020 by Corwin Press, Inc. All rights reserved. Reproduction authorized for educational use by educators, local school sites, and/or noncommercial or nonprofit entities that have purchased the book.