Grade	Topic	Skill	Understanding
K	Count to tell "how many"	- 1 to 1 correspondence - Subitize (recognize spot and other visualizations to 10) - Compare the number of objects in one group to another	- Our numbers can be used to tell "how many." - Our numbers can be shown in many different ways.
K	Number Sense	- Orally count to 100 by ones and tens - Place value recognition (tens and ones) for the teen numbers - Compare numbers using various representations (models, hundreds chart, etc.) - Write numbers to 20	- Our numbers follow a pattern that remains the same. - Our numbers are based on groups of ten. - Our numbers can be shown in many different ways.
K	Addition and Subtraction	- Add and subtract within 5 - Recognize when to add and when to subtract in word problems	- Our numbers can be shown in many different ways. - Only things that are alike can be added or subtracted.
1	Number Sense	- Give ten more and ten less than any number given without counting - Build understanding of place value and connect to place value notation	- Our numbers follow a pattern that remains the same. - Our numbers are based on groups of ten.
1	Addition and Subtraction	- Fluently add and subtract within 20	- Our numbers can be shown in many

		- Develop multiple mental strategies for adding numbers, such as "counting on" and "making ten." - Determine an unknown value in any position in an addition and subtraction equation - Add two 2-digit numbers including regrouping within 100 - Explore properties of addition and subtraction (commutative and associative) by concept but not by name	different ways. - Only things that are alike can be added or subtracted. - Addition and subtraction relate to each other and allow us to make fact families.
1	Measurement	- Compare lengths to develop a sense of size - Tell time to the hour and half hour - Compose shapes to make a new shape	- Measurement lets us describe and compare objects. - Time is a unit of measurement that helps us describe and schedule a day. - Shapes are defined, categorized and classified by their characteristics. - Putting together or taking apart shapes can make new shapes.
2	Number Sense	- Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.	- Our numbers follow a pattern that remains the same. - Our numbers are based on groups of ten.

		- Use place value understanding to add and subtract two 3-digit numbers within 1000 - Mentally add or subtract 10 or 100 to any number based on place value - Connect dollars, dimes and pennies to place value	
2	Addition and Subtraction	- Know all single digit sums by heart - Fluently add and subtract within 100 using strategies - Add and subtract in real-world contexts within 1000, with both one- and two-step problems.	- Our numbers can be shown in many different ways. - Only things that are alike can be added or subtracted. - Addition and subtraction relate to each other and allow us to make fact families. - There are many different strategies that can be used to add and subtract numbers such as drawings, mental strategies, using number lines and objects and equations with symbols.
2	Measurement	- Use standard units of measure and standard measurement tools - Use a number line to connect numbers, lengths and units. Connect number	- Measurement lets us describe and compare objects. - What we measure determines the units used to measure, and the units of measure describe the attribute being measured. - The same

		lines to rulers and bar graph scales	representation of our numbers can be used in multiple situations.
3	Number Sense	- Use place value and properties of operations to reason about number and operations	- Our numbers follow a pattern that remains the same. - Our numbers are based on groups of ten.
3	Operations	- Add and subtract fluently within 1000 - Build foundations of multiplication and division including area models - Multiply and divide within 100	- There are many strategies that can be used to perform any operation, including mental strategies and paper and pencil strategies. - Only things that are alike can be added or subtracted. - Addition and subtraction relate to each other and allow us to make fact families. - Multiplication can represent repeated addition, a number of groups with equal elements, and the creation of area. - Division can represent repeated subtraction, putting a total number of items into equal groups, and the partitioning (division) of area. - Multiplication and division relate to each other and allow us to make fact families.
3	Foundations of Fractions	- Divide models to model fractions - Develop fractions as number - Equivalent	- A fraction shows the relationship between parts and a whole. - Fractions are a way to represent division.

		fractions	- Our numbers follow a pattern that remains the same. - Our numbers can be shown in many different ways. - The same fraction can be represented in many equivalent ways.
3	Measurement	- Use continuous measurement (including liquid, volume, mass and time) to model fractions - Develop concept of area, connecting to multiplication - Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.	- Measurement lets us describe and compare objects according to their attributes and properties. - What we measure determines the units used to measure, and the units of measure describe the attribute being measured. - Number operations are often used to determine the measured attributes of a shape, such as area and perimeter.
4	Number Sense	- Use place value and properties of operations to reason about number and operations	- Our numbers follow a pattern that remains the same. - Our numbers are based on groups of ten.
4	Operations	- Use standard algorithm for addition and subtraction - Extend whole number addition and subtraction to fractions - Multiply and divide whole number multidigit numbers	- There are many strategies that can be used to perform any operation, but it is helpful to have one method that we agree to call standard. - Only things that are alike can be added and subtracted, and in fractions the denominator

		using multiple strategies. - Extend whole number multiplication to multiplication of a whole number and a fraction	determines what is alike. - Multiplication can represent repeated addition, a number of groups with equal elements, and the creation of area.
4	Fractions	- Use unit fractions to reason about equivalence, ordering, and operations - Use decimal notation to represent fractions	- Fractions are a way to represent division. - Equivalent fractions are found by multiplying by 1 . - Our numbers follow a pattern that remains the same. - Our numbers are based on groups of ten. - Our numbers can be represented in many equivalent forms.
5	Number Sense	- Use place value and properties of operations to reason about number and operations - Extend place value understanding to decimal numbers	- Our numbers follow a pattern that remains the same. - Our numbers are based on groups of ten. - Our numbers can be represented in many equivalent forms.
5	Operations	- Multi-digit multiplication with standard algorithm. - Division with two-digit divisors - Multiplication of multi-digit whole numbers and decimals to the hundredths place - Multiplication of fractions	- There are many strategies that can be used to perform any operation, but it is helpful to have one method that we agree to call standard. - Multiplication can represent repeated addition, a number of groups with equal elements, and the creation of area. - Division can

		- Divide unit fractions by whole numbers and whole numbers by unit fractions	represent repeated subtraction, putting a total number of items into equal groups, and the partitioning.
5	Geometry	- Volume	- Measurement lets us describe and compare objects according to their attributes and properties. - What we measure determines the units used to measure, and the units of measure describe the attribute being measured. - Number operations are often used to determine the measured attributes of a shape.
6	Number Sense	- Order and place rational numbers on number line - Analyze proportional relationships - Introduction to Integers	- Our numbers follow a pattern that remains the same. - Our numbers are based on groups of ten. - A negative sign in math means opposite. - The sign of a number represents different contexts in our world. - Our numbers can be represented in many equivalent forms.
6	Operations	- Fluently divide multi-digit numbers using the standard algorithm - Fluently add, subtract, multiply, and divide multidigit decimals using the standard algorithm for each	- There are many strategies that can be used to perform any operation, but it is helpful to have one method that we agree to call standard. - The meaning of an operation determines which operation to

		operation - Interpret and compute quotients of fractions and solve word problems involving division of fractions by fractions	use in a given situation. - Multiplication can represent repeated addition, a number of groups with equal elements, and the creation of area. - Division can represent repeated subtraction, putting a total number of items into equal groups, and the partitioning.
6	Algebra	- Develop understanding of variables - Write, read and evaluate algebraic expressions - Write and solve one-variable equations and inequalities - Graph points in four quadrants	- Algebra is sophisticated arithmetic. - A variable can represent an unknown value, or a range of unknown values. - The same quantity or expression can be represented in many equivalent ways. - We use algebra to model the real world. - Operations used with algebraic symbols follow the same patterns and meanings as using the operation in any number system. - Our operations come in inverse pairs, which allow us to solve algebraic equations. - A negative sign in math means opposite. - Number lines can be used to represent and graph regions or space.
6	Geometry	- Area, Volume	- Measurement lets us

		and Surface Area - Apply Algebra to Geometry including graphing in coordinate plane and solving volume formulas		describe and compare objects according to their attributes and properties. - What we measure determines the units used to measure, and the units of measure describe the attribute being measured. - We use algebra to model the real world. - Number operations are often used to determine the measured attributes of a shape.

