Figure 8.24.

Polynomial or Not?

Polynomial functions can appear to be difficult to discover from a table of values unless you know a cool pattern that emerges.

<u>Part 1</u>

Use repeated (finite) differences and see what happens.

1. This is a cubic polynomial function.

	Х	У
Note: The x-values	-2	$15 \rightarrow -14$
are changing	-1	
constantly (by 1 in	0	$ -1\langle \frac{-2}{-2} \rangle - \frac{-2}{-2}$
this table), so the	1	$ -3 < \frac{-2}{2} > >$
process of finite	2	-17 > -14 > -14
differences will		
work		

How many times did you have to find a difference before the differences showed a constant change?

2. This is a quadratic polynomial function. Find the first and second differences.

Х	У
-2	2
-1	-2
0	-4
1	-4
2	-2

How many times did you have to find a difference before the differences showed a constant change?

3. This is a fifth degree polynomial function.

х	У
-3	-311
-2	-47
-1	1
0	1
1	1
2	49
3	313
4	1201

How many times did you have to find a difference before the differences showed a constant change?

What can you conclude about the degree of a polynomial function and the number of times it takes to get to a constant difference?

This process is called either repeated difference or finite differences. Explain why both names would be appropriate.

<u> Part 2</u>

You have now discovered a pattern for determining if a table is a polynomial table or not. Decide if each of the following tables is a polynomial function or not. Explain how you know.

1.	x	У
	-4	und.
	-3	13
	-2	6.5
	-1	2.33
	0	0.25
	1	0.2
	2	2.1667
	3	6.1429
	4	20.111

Explain your conclusion:

2.	Х	У
	-3	-4.442
	-2	3.26
	-1	-2
	0	0
	1	2
	2	3.26
	3	4.44

Explain your conclusion:

3.	x	У
	-4	137
	-3	18
	-2	-13
	-1	-10
	0	-3
	1	2
	2	23
	3	102
	4	305

Explain your conclusion:

You can also use a horizontal table and the same process.

Explain your conclusion:

Explain your conclusion: