Figure 8.17. Beyond Linear: Working with Polynomials Unit Design Template

<u>Unit Title:</u> Beyond Linear: Working with Polynomials (Algebra 2)

Standards Addressed (from Common Core State Standards, NGO and CCSSO, 2010):

Polynomial Arithmetic:

- Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
- Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form $q(x) + \frac{r(x)}{b(x)}$, where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system.
- Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x a is p(a), so p(a) = 0 if and only if (x a) is a factor of p(x).

Polynomial Equations:

- Know there is a complex number *i* such that i2 = -1, and every complex number has the form a + bi with *a* and *b* real. (*Review from last unit*)
- Use the relation i2 = -1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. (*Review from last unit*)
- Solve quadratic equations with real coefficients that have complex solutions. (*Review from last unit*)
- Use the structure of an expression to identify ways to rewrite it. For example, see x4 y4 as (x2)2 (y2)2, thus recognizing it as a difference of squares that can be factored as (x2 y2)(x2 + y2).
- Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
- Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x^2 + y^2)^2 = (x^2 y^2)^2 + (2xy)^2$ can be used to generate Pythagorean triples

Polynomials Functions:

- Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
- Graph polynomial functions, identifying zeros when suitable factorizations are available and showing end behavior.
- Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
- Graph functions expressed symbolically and show key features of the graph (by hand in simple cases and using technology for more complicated cases).

By the end of the unit (new learning), what will students ...

Know	Understand	Be Able to Do
Vocabulary: binomial	Polynomials are very	Identify polynomials and
expansion, complex	similar to integers.	polynomial functions.
conjugates, complex	Arithmetic with	
numbers, continuous	polynomials works in the	Operate on polynomials
functions, degree, end	same ways as arithmetic	using multiple strategies.
behaviors, even function,	with integers. They are	
factor by grouping,	closed in addition,	Rewrite simple rational
intervals, Fundamental	subtraction, and	expressions using
Theorem of Algebra,	multiplication, just as are	inspection and long
imaginary numbers, odd	integers. (Algebra is grown	division.
functions, Pascal's triangle,	up arithmetic.)	
polynomial and polynomial		Use Pascal's triangle to
functions, relative (local)	Polynomial functions	expand binomials.
maximums and minimums,	follow all of the same	
Rational Root theorem,	general patterns as any	Explain how operating on
Remainder Theorem,	other functions with parent	polynomials is like
repeated differences (finite	functions, transformations,	operating on integers.
differences), repeated	domain and rage,	
solution, symmetry,	representations, etc.	Apply the factor and
synthetic division,		remainder theorems to
	Polynomial functions are	factor or evaluate
Determining degree of	used to model, analyze and	polynomials.
polynomial, and polynomial	make predictions in many	
equation from a table of	real world situations.	Prove polynomial identities
values.		and find Pythagorean
	Defining an imaginary	Triples.
Strategies for operations	number, <i>i</i> , explains many	
with polynomials (e.g.	mathematical anomalies	Graph polynomials and
lattice multiplication and	including polynomial	identify key features.
division; long division;	functions without a Real	
synthetic division)	zero, and defines roots for	Factor polynomials using
	polynomial functions whose	multiple methods.
Remainder Theorem	graphs do not cross the x-	
Rational Root Theorem	axis.	Compare and contrast
Fundamental Theorem of		strategies used with
Algebra		polynomials (operations,
		expansion, factoring,
Binomial expansion using		evaluating, etc.)
Pascal's triangle		
		Find all zeros of a
How to identify key		polynomial function,
component of a polynomial		including imaginary zeros.

graph	Explain how a polynomial
Analyzing a polynomial to	function has the same
sketch its graph	number of roots as its
.2	degree even though some
$i^2 = -1$	graphs appear to have less
Cycles of imaginary	or no roots.
numbers	
A complex number is	Apply polynomials in real
composed of an imaginary	world contexts in order to
number and a real number.	analyze, solve or make
	predictions concerning the
Not all roots of a function	situation.
are real.	
Some roots of a function	
can occur multiple times.	
Ĩ	
How to determine rational	
roots for a polynomial	
function	

Pre-Assessment Ideas:

Quick Write: What do you know about Polynomials? (Provide word bank with all vocabulary in unit) Fill in categories: Operations (Give problems to complete, ask for multiple strategies) Representations Finding zeros Analyzing a graph

Review: Complex number review problems

Summative Assessment Ideas:

Chapter test

Authentic Performance Assessment: Choose an application for Polynomial modeling: Roller Coasters, Engineering Packaging, Research various tables of data that are modeled by a polynomial – Scatter plot, fit a polynomial model and interpret the results, Create a Game to practice operations and graphing polynomials, Write a "Do-It-Yourself Polynomials" book

<u>Formative Assessment Ideas:</u> Exit cards, homework, class activities, discourse, quiz and quest