
Computational
Thinking and Coding

for Every Student

Discussion Guide

Jane Krauss

Kiki Prottsman

Computational Thinking and Coding for Every Student offers both a
rationale and practical steps for introducing computer science in school.

The authors recommend discussing your ideas and experiences with fellow
readers to foster professional learning and personal reflection. This discus-
sion guide is intended as a starting point for collegial conversations. Connect
with other teachers who are starting their journey. Whenever you come
across a question that really makes you think, share your response on social
media and let everyone share in your epiphany!

Discuss on social media!

zz FB: www.facebook.com/groups/CodingInClass

zz Twitter: @CTandCoding

zz G+: https://goo.gl/R9Q429

zz See the companion site for more: resources.corwin.com/
ComputationalThinking

PREFACE

Skipped the preface, did we? Many readers skip past the front matter of a
book and dive right into the first chapter. This might be a good time to go
back and read it. It’s short, so you and your colleagues (who also skipped
it) can read it together! In the preface, the authors summarize the state of
computer science education (it’s booming) and describe the arc of the text.
Think of the preface as a brief summary of both the context for and the
context of the book.

1. The preface presents the recent shift from little to lots of momentum for
computer science in U.S. schools. Discuss: What was your impetus to give
computer science (or at least this book) a try? What piqued your interest?
In what ways were your impressions about computer science confirmed
or changed?

2. As you get ready to dive into this book, what are your greatest hopes
about introducing computer science? Your greatest concerns?

CHAPTER 1. AN INTRODUCTION
TO COMPUTER SCIENCE

1. In Chapter 1 you explored the processes for solving a sudoku puzzle in a
methodical way. Did you get a sense of how a solution could be derived
by applying computational thinking?

2. Algorithms are all around us. Discuss another activity or task you accom-
plish by carefully executing a set of steps. What instructions might you lay
out if you emulated the process in a computer app?

3. You likely have a better sense now of what computer science is and is not.
Pretend you are speaking to a parent or your school administrator. How
would you describe the difference between learning to use computers and
learning computer science?

CHAPTER 2. WHY KIDS SHOULD
HAVE THE OPPORTUNITY TO LEARN

1. In Chapter 2 the authors present computer science both as a fundamen-
tal literacy and as a way for students to practice resiliency in problem
solving. What lessons in the core curricula do you teach that draw on
students’ reasoning and logic? What parallels do you draw between those
and learning experiences in computer science?

2. The authors relate Seymour Papert’s association of computers to mud
pies as both being mediums to think with. How does your role as teacher
change when your students are learning in open-ended and exploratory
ways?

3. Chapter 2 concludes by pulling back from the classroom experience to
consider the larger societal case for why more youth should follow a com-
puting education and career pathway. What of this rationale resonates
with you? Do you see introducing CS as a supplement to your program,
or as an obligation?

CHAPTER 3. TRY YOUR HAND AT CODING

1. Whew! Because you worked through the exercises in Chapter 3, you are
now more experienced in computer science than most teachers! Your com-
putational thinking got a workout, too. Each exercise ended with journal
questions–prompts to help you examine the experience. Refer to your
notes and discuss your experiences and impressions. Did you have similar
experiences? Or did some activities present greater challenges or result in
greater rewards for some of you than others?

2. Pair programming was recommended as a metacognitive strategy for eval-
uating and improving reasoning. Did you try it with these exercises? If so,
in what ways did thinking aloud together affect the experience?

CHAPTER 4. GETTING STARTED IN THE CLASSROOM

1. As with any student experiences involving computers, educators need to
pay attention to students’ physical and social well-being when teaching
computer science. Discuss the advice in Chapter 4, and describe what res-
onated with you the most. What explicit actions will you take now that
you might not have considered before?

2. Another practical concern raised in Chapter 4 was accessing appropriate
technology for a fulsome computing experience for your students. Think
about your teaching and learning environment in terms of technology
access. In what ways does it fall short, and what workarounds might you
try? If adjustments involve others, how will you state your case?

3. Authors offered suggestions for getting started with computing. Consider
your technology access and personal readiness and discuss the curriculum
choices you plan to make.

CHAPTER 5. DOS AND DON’TS OF
TEACHING COMPUTER SCIENCE

1. Discuss which “dos and don’ts” advice was most useful to each of you.
What other “dos and don’ts” came to mind?

2. In what ways do any of these “dos and don’ts” apply to other subjects you
teach?

3. Do any of these “dos and don’ts” conflict with practices you should or
shouldn’t do in other classes?

CHAPTER 6. ACTIVITIES THAT FOSTER
COMPUTATIONAL THINKING

1. Computational thinking is an approach to problem solving that backs up
a few steps to encompass problem finding and problem posing as well.
Have you thought about problem solving as a stage in a bigger process
before now? With your fellow readers, think of a problem-solving activity
in your regular curriculum that could be more robust if you didn’t hand
students a problem to solve but instead set up the conditions by which
they become aware of and begin framing a problem to solve.

2. There is great interplay between the elements of computational thinking
one applies to the task of programming a computer. That said, teasing
CT apart helps get at important features of the process. In Chapter 6, the
authors recommend that you get comfortable calling out CT practices by
name. Are these “pillars” making sense to you? Would you refer to them
within computer science learning? Where are they evident in other sub-
jects you teach?

3. Look at the everyday examples of each “pillar” of computational thinking
in the table at the end of Chapter 6. With your reading buddies, challenge
yourselves to think of several more examples for each pillar. Can you
come to agreement on one best example for each?

CHAPTER 7. DECOMPOSITION

1. The authors state, “Decomposition is breaking a problem down into
smaller, more manageable parts.” Which of the activities in Chapter 7
is most suited to your students and would best get across this universal
approach to problem solving?

2. Imagine you are explaining decomposition as a problem-solving method
to your students. How would you describe the process, and what exam-
ples might you give that would resonate with the interests and life experi-
ences of the particular age group you teach?

CHAPTER 8. PATTERN RECOGNITION
(WITH PATTERN MATCHING)

1. Reflect on the “pattern matching” activities and lesson in Chapter 8, and
discuss in what ways “pattern matching” is about extrapolation and pay-
ing attention to salient cues. How might pattern matching be put to use in
examining routines in long division, trends in history, structures in music
composition, or “tells” in a game of poker?

2. How does pattern matching help pave the way for abstraction (described
in the next chapter)?

CHAPTER 9. ABSTRACTION

1. Abstraction is used extremely often, even though we normally don’t call it
out as such in everyday life. Can you think of times when you use abstrac-
tion effortlessly?

2. Say you were going to explain the process of making cookies first to a forty-
year-old, then to a four-year-old. How would your abstraction differ?
With whom do you think you would use the most abstraction? Why?

3. Can you relate the idea of abstraction back to computer science? How
might it help make your work easier if you were trying to create one
function that added x + 5, one that added x + 2, and one that added x + 7
(where x is a number given as input by the user)?

CHAPTER 10. AUTOMATION

1. The authors mention in Chapter 10 that automation isn’t always about
running things on machines. How might automation make something
easier, even if you still have to do it by hand?

2. Algorithms and automation often go together. Can you think of a reason
that you might need one without the other?

3. Refer back to that abstracted algorithm for creating cookies presented
earlier in the discussion guide. Now, imagine you were going to translate

it for a bakery system. How would the algorithm be different if you were
sharing instructions with adults versus children? What might that algo-
rithm look like if you were trying to prepare it for automation?

CHAPTER 11. ACTIVITIES THAT
FOSTER SPATIAL REASONING

1. Your introduction to spatial reasoning started with a story from Seymour
Papert’s childhood. He said, ““Gears, serving as models, carried many
otherwise abstract ideas into my head.” Describe a time in your own
learning where associating a new or abstract concept to something in the
physical world helped you reach understanding.

2. The authors posit that spatial thinkers aren’t born; rather, they are made
through sufficient experience. What advice in this chapter about “spatial-
izing” your teaching are you likely to try? Why does this kind of activity
have merit over other ideas?

CHAPTER 12. MAKING WITH CODE

1. The authors offer examples of inventive student work. They also say,
“Making isn’t about stuff. It’s not even about the space. More than any-
thing, making is culture and design thinking.” Discuss ways you could
infuse the maker spirit into your school program.

2. Together with your reading partners, go to Twitter and search the hashtag
#makerED. What are maker-educators talking about? In what ways do
their interests (or concerns) resonate with you?

3. The authors discuss pros and cons of making in school as well as issues
around equitable access. If the topic of making came up in a staff meet-
ing at school, what defense for, or argument against, making would you
make?

CHAPTER 13. DESIGNING A CURRICULUM
CONTINUUM ACROSS K–12

1. In Chapter 13 the authors discriminate between computer science and
digital literacy. Some teachers believe graphic design or word processing
fall into the category of computer science. What elements of computer
science can you imagine children could learn in classes like this (or even
music and physical education) if teachers were to infuse CS vocabulary
and concepts into these non-CS classes?

2. Clearly, if students can learn CS from “unplugged” lessons, then computer
science involves more than programming. In what way do you think stu-
dents who have learned CS have an advantage in their other studies over
students who have not?

CHAPTER 14. IMPORTANT IDEAS
ACROSS ALL GRADES

1. Some students fight the idea of working as part of a team. How would
you explain the benefits of pair programming to reluctant students to help
them understand it’s an aid to learning, and not a punishment?

2. Some teachers feel they aren’t doing their job if they spend time standing
back and observing, rather than actively teaching and helping. What are
some of the pitfalls of jumping in to assist students too soon? What might
be the benefits of holding back direct help and instead providing guiding
questions and resources so students help themselves? What percentage of
each style of helping do you do in your teaching? What percentage would
you like this to be?

3. What ideas do you have to share to make stronger learners in a com-
puter science environment? What can you do to promote equity in CS? If
you have a study group, share some of your favorites with one another.
Otherwise, head over to our Facebook page to have a meaningful discus-
sion.

CHAPTER 15. THE ELEMENTARY PATHWAY

1. This chapter discusses unique challenges when teaching computer science
to elementary school students. In your experience, are there any perti-
nent developmental milestones that the authors failed to consider? What
would you suggest others take into account when trying to teach CS to
young students?

2. Sometimes students in grades K–5 pick up concepts faster than adults do.
(Think about how this is true with languages or complex remote con-
trols.) How would you take advantage of their agile thinking in your
classroom?

3. When you teach computer science and computational thinking to young
students, it changes the way they look at problems in other subjects as
well. What are some of the perks and pitfalls of having children learn to
think like computer scientists?

CHAPTER 16. THE MIDDLE SCHOOL PATHWAY

1. Middle school students are a rare breed. Not yet adults, but no longer
wanting to be treated like children, this age band can be difficult to bring
on board with new ideas. What are some of your best techniques for
encouraging buy-in when introducing new topics to middle school stu-
dents? How would you present the computer science value proposition?

2. Middle school classrooms show a huge disparity in the computer science
background of their students. How might you address wide differences
in a way that strengthens everyone, rather than treating some students as
remedial and others as advanced?

3. In what ways can you tailor your instruction to appeal to the “What’s
in it for me” nature of middle schoolers? Can you use this mechanism
to encourage students to be positive with one another (both in class and
online)?

CHAPTER 17. THE HIGH SCHOOL PATHWAY

1. High school students are starting to open their eyes to the world around
them and investigate not only ways that they can get help from their com-
munity but also ways that they can be of help. Do you think your high
schoolers would respond better to an activity that you have preplanned to
benefit an actual end user in their neighborhood or to an activity that they
are allowed to design themselves?

2. Many students will be able to easily leap into text-based coding at this
age, but some will struggle. Block-based coding is a simple way of build-
ing a foundation, but it has its limitations. How can you utilize different
skill sets to keep all students moving in an upward direction without any-
one feeling like they are hindered by the learning pace of others?

3. When working in groups at this age, you will find that some students
position themselves so they don’t need to do any coding at all. In what
ways might you structure your projects so that everyone gets to experi-
ence “taking the wheel,” while keeping coding anxiety to a minimum?

CHAPTER 18. ADAPTING LESSONS FOR YOUR CLASS

1. With a new subject such as computer science, you might be uncomfortable
straying from teaching a lesson the way it is written. If you find that you
need some tweaks to an otherwise great lesson plan, what do you plan to
do? Share your resources with our online community on Facebook. Also,
Tweet away!

2. Sometimes lessons need more than a little alteration for a particular group
of students. Choose one of the lessons from the book (or find one online)
and with your reading partners, practice “fixing” it for your needs. Share
your adapted lesson with our online community so they can benefit from
your work, as well!

3. What might you do when you recognize that you have the perfect place to
squeeze in a computer science project but cannot find a lesson that even
comes close to hitting the mark for your particular grade or subject? Will
you attempt to create one on your own? Will you ask for help from our
community? Would you feel comfortable assigning your class the task of
coming up with a project and then assigning them to complete that project?

CHAPTER 19. WHAT PEOPLE ARE DOING
AND HOW THEY ARE DOING IT WELL

1. Chapter 19, with stories and testimonials from the field, was meant to inspire.
Which story or testimonial spoke to you the most? What was it about the
teacher, learner, or community experience that made it meaningful?

2. If you were to host an event to foster community support for your school’s
computer science program, what would you do? What would you be ask-
ing of the community? (Beyond monetary support, could this include
volunteer time, tours of industry, or participation in career fairs?) How
would you present the value proposition to make the most of a well-timed
and well-advertised fundraiser?

3. Do you have any students with testimonials? Have you heard any from
your local community or any online communities that you belong to? We
would love to have you share those with us! Please post any outstanding
student experiences (positive or otherwise) to our online group. Please
share on social media to your worldwide neighborhood of educators and
make computer science education better for everyone!

Retrieved from the companion website for Computational Thinking and Coding for Every Student:
The Teacher’s Getting-Started Guide by Jane Krauss and Kiki Prottsman. Copyright © 2017 by
Corwin. All rights reserved. Thousand Oaks, CA: Corwin, www.corwin.com

